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Abstract. We consider a gaseous mixture where the constituting particles interact through 
binary elastic collisions and removal processes. This system is described by an extended 
Boltmann equation for which we derive exact solutions of similarity type, and determine 
existence conditions. Finally we write explicit Solutions for some particular choices of the 
collision and removal frequencies. 

1. Introduction 

The nonlinear Boltzmann equation (NLBE) describes the evolution of the distribution 
function f ( r ,  D .  r )  for a dilute gas, whose particles undergo binary elastic collisions. 
Several years ago, Krook and Wu [I], and, independently Bobylev [2], found an exact 
analytic solution known as the BKW mode, for this equation. This particular solution is 
valid for spatially homogeneous systems and Maxwell molecules [3]. In this model, 
collision cross-sections have the form 

x) = Qol)/g (1) 

where b is the impact parameter, x is the deflection angle, and g stands for the relative 
velocity between the interacting particles before the collision. In the case of a multi- 
component system, a BKW mode can be found, and the particular solution correspond- 
ing to species a, reads [4] 

f.(u, t )  = (2~a.)-"~ exp (- uZ/2a . ) (P , ( f )  + u2Qo( f ) )  (2)  

where a., P.  and Q. are functions of time. This solution exists if all the components 
have the same mean kinetic energy, 

mea&) = E M  VU (3) 

and certain parameters defining the system satisfy specifed relations [4]. Let n. be the 
number density of particles belonging to species a, ma their mass and the elastic 
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collsion frequency between two particles, one belonging to species a, and the other to 
species b.  If we consider a two-species system and define the following parameters: 

W R Crauero et a1 

(4 )  

(5) 

St= K L - - K ” , P z I ( ~ - W  

& = K h  - K ; Z V I ~ ( ~  - h) 
k b  = 4m.mdm. + mb)’ 

the condition to be satisfied at all times turns out to be 

(nzS1 - n,S2) ( z&z($+2) - 1) = 0. 

Recently, the Boltzmann equation has been extended (ENLBE) in order to consider 
not only elastic collisions but also removal and creation events 151. This enables the 
ENLBE to be applied in different areas such as chemical kinetics, nuclear reactor 
physics, etc, where, as a general rule, the particle number does not remain constant. 
Several schemes have been proposed in order to find solutions for the ENLBE, specially 
for Maxwell models [6,7]. In particular, the BKW mode has been generalized to the 
ENLBE for a single-species gas 181. 

In the next section, we shall derive the conditions for the existence of a BKW mode 
for the ENLBE in the case of a binary gas mixture. Section 3 is devoted to setting up the 
general form of this particular exact solution, and in section 4 we present some 
particular cases in which a closed form for this solution can be written. 

2. Existence conditions 

Let us consider a two-component gaseous mixture of Maxwell molecules, in which 
isotropic elastic collisions as well as removal processes take place. In this case, the 
ENLBE for the velocity distribution function of species a is written 

(7) 
where 
b-a collision. 

We write 

is the removal frequency corresponding to removal of a particle a in one 

h(o, t )  = n,(Og,(u, 4 (8) 
such that 

gn(v, t )  dv = 1. (9) J 
If we substitute equations (9) in equation (8)  and then integrate with respect to U, 

we obtain an autonomous evolution equation for the number densities: 
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This system can be solved without solving the entire BE. In addition, we get the 
equation that determines the evolution of ge(u, r )  

The structure of this equation is identical to that for the case without removal, i.e. 
equation (7) without the last term. Accordingly, we propose for g.(u, t )  the structnre 
of the BKW mode, equivalent to that of fo(u,  t), in the case without removal (equation 
(2)): 

Again, we shall assume that both species have equal mean kinetic energy 

Let us define 

Conservation of particle number and of energy implies that 

Pa + 3R, = 1 (a=1,2) 

where KB is the Boltmann constant and Tis the system temperature. 
When equation (12) is substituted into equation ( l l ) ,  integrations in the right- 

hand side can be explicitly performed. We obtain one equation for each gas species 
consisting of an equality of expressions quadratic in U*. Equating coefficients results in 
a system of six nonlinear differential equations for the five functions &t), P.(t) and 
Q&): 
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Equation (19) must hold for a = 1.2. This yields a simple relation bctween RI and R2: 

Substituting equation (20) in equation (18), and after some algebra, two different 
equations are obtained for one of the functions Ri. Solution to this system exists if one 
condition is satisfied at all times. The new 'compatibility' condition for the case with 
both removal processes and elastic collisions turns out to be 

As the evolution of a,(!) and n2(t) is determined independently, equation (21) 
should hold for any nl(f), n2(t). If nl(t) is not proportional to n2(f), this implies 

As stated earlier, the relations above do not involve the species densities, whose 
evolution is ruled i.?dependently by equation (10); instead they are relations between 
collisions and removal frequencies and masses. 

When we set all the removal frequencies equal to zero in (21), both densities 
remain constant, so we recover the original Krook and Wu compatibility relation, 
equation (6). 

In [6],  the ?D BKW mode for the ENLBE was deduced as a particular case of a more 
general solution consisting in a modified Laguerre series. Such a solution involves 
conditions similar to (22) and (23) between collison frequencies and masses. It is 
worth mentioning that this ZD bkw mode is also valid for Maxwell models with non- 
isotropic collision cross-sections. The condition that allows truncation of the Laguerre 
expansion in [6] (equation (57)) seems to be inherent to the BKW mode, since it is the 
ZD equivalent of (19), which is deduced here starting from different grounds. 

3. General-case solution 

Having established the conditions that the system given by (9) should satisfy in order 
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to have a BKW solution, we are in position to derive it. Thus, from the differential 
equation system, (17)-(19), we find 

R,(t):(  -exp( - ~ ( B n , + C n , ) d t ) ( ~ ~ A n , e x p ( ~ ( B n l + C n , ) d t + Z  n n 

where 

and 2 is an initial condition. 
Let us define: 

and 

Then R,(t)  is written 

Once R,(t)  is known, equation (20) may be used to calculate R2( f ) .  
When the collision frequencies satisfy (22) and (23), equation (24) gives an explicit 

form for f.(u. t ) .  provided the equations for the number densities, (lo), can be solved 
in a closed form. 

4. Particular cas- 

Equation (IO) has been studied in the framework of extended kinetic theory, and 
some analytical solutions for particular choices of the parameters, namely, the 
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removal frequencies, are known [9]. 
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In this section we will derive the BKW mode for particular cases considered in [9] 

Casel. When 

the solution of (10) yields [8] 

where 

From (28) and (32) we get 
(1 +Df)”-’D ) - B h ’ ~ K o - l h (  (1 +Df)l-‘L) ) - C N d ( I - a h  

(a ,  +a# + Dt)”-’ at + al( 1 + Df) t -a  . (34) 

Equation (29) can be explicitly written in the following form: 

+1 
CNz + BNi 

V =  (a - l )a ,  a,(l-a) 
X =  (1 +Of)”-’. 

It is always possible, making an adequate change of variables, to express (35) in 
terms of a hypergeometric function. For instance, if a<l,  and al>a2, we have 

From the analytic continuation properties of the hypergeometric function, it is 
possible to find J l ( f )  for any choice of the parameters a, a, and a2. 

For the particular case a = l ,  we have K;,=K&. From the condition imposed by 
(31) ,  we have 

K;, = K h  K;,= K i t  (38) 
and we get 

N2 
n2(t) = - 1+Df 

NI 
n , ( t )=-  1 + Dt (39) 
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i.e. the number densities of both species evolve proportionally as time elapses. From 
(30) we obtain 

where 

EN,  + CN2 
D E =  

Case 2. kri=O. In this case we have 

where 

BNI 
6 p=-+l  (43) CN2 6 = K i 2 N ,  q =  --+ 1 

Y 
~ = K i i N z  

and 

r=exp [ (y -d ) t ] .  (44) 

We can choose 6 > y  (the case d = y  will be treated later on) and obtain for B>O 
(P>1) 

A N I  r4-n-1) 1 
J ' ( t ) = ( y - " ) P - n ( - 6 ) ( " P + l )  (-1) 

These results simplify when 6 = y .  In this case the solution to (IO) yields 
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Again, in this particular case, both densities evolve proportionally to each other, and 
Rt( t )  can be easily calculated: 
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Case 3. Ki2 = 0; K i ,  = K L .  In this case we have 

I , ( t )  = exp (-s’ (Brit + Cn,) dt 
U 

with 
z= 1 + KizNzt  

(49) 

x {i$”-”’ exp [U29]w,,_l,n:,,2(~) -,$(I + 8 In T ) @ - I ) ~  

xexp [5(1+9 l n ~ ~ ~ ~ ~ l ~ , ~ - l ~ , ~ ~ , z ( ~ ( l  +blnr))} (52) 
where W&) stands for Whittaker’s function [9]. As remarked before, these are just 
a few particular examples of the BKW mode for a binary mixture with removal 
processes and, of course, they are not the only ones. 

Finally we can show that our solution reduces to that derived by Spiga when there 
is only one species [8] .  Starting from (32) and setting Nz=O we have 

NI 
n,(t)  =- l + a t t  

n&) = 0. 

Equation (34) reduces to 
I ( t )  = (1 +at t)-(BNt’al) 

J ( t )  =f(t) - 1 

and (35) yields 

finally giving 

(53) 

(54) 

(55) 

which is essentially the behaviour described in detail in [8]. 
Up to now, we have set up exact similarity solutions of the ENLBE for different 

systems, regardless of their physical meaning. So we have to analyse the conditions for 
these solutions to be acceptable from a physical point of view. 



A BKW mode for the extended Boltzmann equation 4173 

First we observe that the velocity distribution function of both species should be 
positive since they represent probability densities. From (12) and (16) we see that 
f(v, t )  will be positive if 

OS R.(t) si a = l , 2 .  (57) 
Also, equation (20) links R,(t)  and Rz(t) yielding 

These relations are valid at all times, in particular they hold for the initial time, so we 
are not free to choose R,(O) and R2(0) independently. Furthermore, the velocity 
distribution functions of both species must obey the H-theorem, that is, they must 
approach Maxwellian distributions as t -  m . We can see from (12) and (16) that this is 
the case if R.(t+ m )  -+O (a  = 1,2). 

From (24) we see that R.(t) remain positive if the initial conditions are positive, 
and tend monotonicallly to zero when t+m if BSO. Fortunately, this is physically 
possible and does not contradict general compatibility conditions defined by (22) and 
(23). So we conclude that if R,(O) and R2(0) are chosen according to (57) and (58). 
then (24) ensures that R&) will obey (57) at all times, and compatibility conditions 
guarantee that the relation given by (58) will also hold at all times, regardless of the 
temporal evolution of both species number densities. 

5. Conclusion 

We have studied a gaseous mixture of Maxwell molecules, taking into account binary 
elastic collisions as well as removal processes between them. 

We have found the conditions that this system must fulfil in order to evolve 
towards equilibrium according to a BKW mode. Furthermore, we have derived the 
mathematical structure of this solution for a general case, and it has been set up 
explicitly for several particular cases in which the particle densities evolution was 
known as an explict function of time. Rather complicated expressions involving hyper- 
geometric functions have been obtained, except for cases in which the particle 
densities of both species remain proportional as the system evolves. 

Our results are shown to reduce to those previously known for both cases of a 
single-species gas with self-removal, and of a mixture with elastic collision processes 
only. 

Finally, we have analysed some conditions that the solutions obtained must obey 
in order to be acceptable from a physical point of view, and the restrictions these 
conditions put on the system parameters. 
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